APPROVAL SHEET

CUSTOMER	
MODULE NO	MG2217S
SPECIFICATION	MG2217S specification V2.1
PREPARED	
CHECKED	
APPROVED	
DATE	

Customer Sug	gestion:
Checked	
Approved	
Date	

GPS Module MG2217S Specification

Version 2.1

2011/08

Revision history

Title		
Model No		
Document No		
Revision	Date	Description
Ver 1.0	2008.03	Original Draft
Ver 2.0	2011.05	Modified 1.1 overview 1.2 feature 2.1.1 General 2.2.1 DC power 4.1 Definition of Pin assignment
Ver 2.1	2011.08	Modified 2.2.1DC power

CONTENTS

1. Introduction	6
1.1 Over view	6
1.2 Feature	6
1.3 Start Now™ technology	7
1.4 Product Application	7
2. Technical Specifications	8
2.1 General Characteristics	8
2.1.1 General	8
2.1.2 Accuracy	8
2.1.3 Datum	8
2.1.4 Time to First Fix (TTFF)	8
2.1.5 Sensitivity	8
2.1.6 Dynamic condition	9
2.2 Electrical Characteristics	9
2.2.1 DC Power	9
2.2.2 Serial Port	9
2.2.3 Antenna	9
2.3 Environmental Characteristics	10
2.4 Physical Characteristics	10
3. Software interface	11
3.1 NMEA V2.0 Protocol	11
3.1.1 GGA—Global Positioning System Fixed Data	11
3.1.2 GLL—Geographic Position –Latitude/Longitude	12
3.1.3 GSA—GNSS DOP and Active Satellites	13
3.1.4 GSV—GNSS Satellites in View	14
3.1.5 RMC—Recommended Minimum Specific GNSS Data	15
3.1.6 VTG—Course Over Ground and Ground Speed	15
3.2 MStar NMEA Command	16
4. Hardware interface	17
4.1 Definition of Pin assignment	17
4.2 Electrical specification	20
4.3 Operating Conditions	20
5. Product handling	21
5.1 Packaging	21
5.2 Reels	21
5.3 Tapes	22

22
22
23
23
24
25
26

1. Introduction

1.1 Over view

MSB2312 GPS solution is a highly sensitivity, ultra compact single chip for GPS application. It includes RF receiver, a fully-featured baseband processor, a Flash memory and a power management unit. The RF receiver employs a single conversion digital low-IF architecture, the high level integration leaves only few off-chip matching and decoupling components really minimize the system cost. The baseband processor is controlled by adaptive signal processing and navigation firmware optimized for execution on low power microprocessor. Sophisticated adaptive control algorithms provide optimal signal acquisition/tracking strategy.

1.2 Feature

- GPS L1 C/A code
- High sensitivity of -161dBm in tracking & -144dBm in acquisition(cold start)
- RF receiver of noise figure at 2.0dB
- Build in power-on-reset and calibration circuits
- Assisted/Autonomous operation
- Fast TTFF in all modes (a typical outdoor)
 - ✓ hot-start in 1s,
 - ✓ warm-start in 32s
 - ✓ cold-start in 34s
 - ✓ Deep Indoor < 20s typical
- Up to 10,000,000 simultaneous search windows
- 80 acquisition & 20 tracking channels
- DGPS & SBAS (WAAS/EGNOS/MSAS) capable
- Support standard NMEA-0183 & Mstar binary protocol
- TCXO & RTC integrated
- Integrate a high-performance embedded CPU

- Integrate a 1MB NOR flash memory
- Frequency-locking between -40 °C ~ 125 °C
- Easy to integrate,
 - ✓ Flexible RF interface compatible with various frequency plan
 - ✓ Dual UART data interface
 - ✓ I2C & SPI interface
 - ✓ Numerous GPIO
 - ✓ Wheel trick , PWM and ADC input
- Operate in 1.2V/3.1V (core/IO), integrate LDO
- Battery backed RAM & RTC and direct connection
- 0.18um CMOS for RF and 65nm Baseband

1.3 Start Now[™] technology

- Mstar Start Now[™] AGPS for GSM/3GPP & CDMA for extended ephemeris and fast TTFFs (mobile phone & tracker)
- Mstar Start Now™ MGAN™-LTE (long term ephemeris) for extended 5~7days ephemeris and fast TTFFs (PND & tracker/logger)
- Advanced power management for trickling and position-fix[™] power management

1.4 Product Application

- PND
- Mobile Phone
- UMPC
- Tracker & Logger units
- MP3 GPS
- GPS Watch
- DSC GPS and related
- Marine & timing navigation

2. Technical Specifications

2.1 General Characteristics

2.1.1 General

Frequency	L1, 1575.42 MHz
C/A code	1.023 MHz chip rate
Acquisition Channel	80
Tracking Channel	20

2.1.2 Accuracy

Position	2m CEP
Velocity	0.1 m/s
Time	1PPS <20 ns resolution

2.1.3 Datum

WGS-84	Default WGS84
--------	---------------

2.1.4 Time To First Fix (TTFF)

Hot start	1sec., average
Warm start	32sec., average
Cold start	34sec., average

2.1.5 Sensitivity

Tracking Sensitivity	-161dBm, typical
Acquisition Sensitivity	-144dBm, typical for cold start

2.1.6 Dynamic condition

Altitude	18000m(Max)
Velocity	515m/s(Max)
Acceleration	4g
Jerk	1g/s

2.2 Electrical Characteristics

2.2.1 DC Power

Voltage	+3.3V ~ +5.0V DC
Supply current	Under 80mA @ 5.0V DC Typical
Backup Battery Power	+3.3V DC

2.2.2 Serial Port

Electrical Interface	Two full duplex serial communication
Baud rate	4.8K /9.6K(Default)/19.2K /38.4K
	/57.6K/115.2K
Navigation update rate	1Hz
Protocol Message	NMEA-0183 Ver 2.0

2.2.3 Antenna

Center Frequency	1575.42 +/-1.032MHz
Polarization	RHCP
Impedance	50 Ohm

2.3 Environmental Characteristics

Operating range	-40°C ~ +85°C
Storage range	-40°C ~ +150°C
Relative Humidity	5% ~ 80%

2.4 Physical Characteristics

Length	15.9 mm
Width	13.1 mm

3. Software Interface

3.1 NMEA V2.0 Protocol

Its output signal level is TTL: 9600bps (default), 8 bit data, 1 stop bit and no parity. It supports the following NMEA-0183

Messages: GGA, GLL, GSA, GSV, RMC and VTG.

NMEA Output Messages: the module board outputs the following messages as shown in Table

NMEA Record	Description
GGA	Global positioning system fixed data
GLL	Geographic position – latitude / longitude
GSA	GNSS DOP and active satellites
GSV	GNSS satellites in view
RMC	Recommended minimum specific GNSS data
VTG	Course over ground and ground speed

Table 1 NMEA-0183 Output Messages

3.1.1 **GGA**-Global Positioning System Fixed Data

Table 2 contains the values of the following example:

\$GPGGA, 161229.487, 3723.2475, N, 12158.3416, W, 1, 07, 1.0, 9.0, M, , , , ,0000*18

Table 2 GGA Data Format

Name	Example	Units	Description
Message ID	\$GPGGA		GGA protocol header
UTC Position	161229.487		hhmmss.sss
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.3416		Dddmm.mmmm

E/W Indicator	w		E=east or W=west
Position Fix Indicator	1		See Table 2-1
Satellites Used	07		Range 0 to 12
HDOP	1.0		Horizontal Dilution of Precision
MSL Altitude	9.0	meters	
Units	М	meters	
Geoid Separation		meters	
Units	М	meters	
Age of Diff. Corr.		second	Null fields when DGPS is not
			used
Diff. Ref. Station ID	0000		
Checksum	*18		
<cr><lf></lf></cr>			End of message termination

Table 2-1 Position Fix Indicator

Value	Description	
0	Fix not available or invalid	
1	GPS SPS Mode, fix valid	
2	Differential GPS, SPS Mode, fix valid	
3	GPS PPS Mode, fix valid	

3.1.2 GLL-Geographic Position –Latitude/Longitude

Table 3 contains the values of the following Example:

\$GPGLL, 3723.2475, N, 12158.3416, W, 161229.487, A*2C

Table 3 GLL Data Format

Name	Example	Units	Description
Message ID	\$GPGLL		GLL protocol header
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	N		N=north or S=south

Longitude	12158.3416	Dddmm.mmmm
E/W Indicator	w	E=east or W=west
UTC Position	161229.487	hhmmss.ss
Status	А	A=data valid or V=data not valid
Checksum	*2C	
<cr><lf></lf></cr>		End of message termination

3.1.3 **GSA**-GNSS DOP and Active Satellites

Table 4 contains the values of the following example:

\$GPGSA, A, 3, 07, 02, 26, 27, 09, 04, 15, , , , , , 1.8,1.0,1.5*33

Name	Example	Units	Description
Message ID	\$GPGSA		GSA protocol header
Mode 1	А		See Table 4-2
Mode 2	3		See Table 4-1
Satellite Used	07		Sv on Channel 1
Satellite Used	02		Sv on Channel 2
Satellite Used			Sv on Channel 12
PDOP	1.8		Position Dilution of Precision
HDOP	1.0		Horizontal Dilution of Precision
VDOP	1.5		Vertical Dilution of Precision
Checksum	*33		
<cr><lf></lf></cr>			End of message termination

Table 4 GSA Data Format

Table 4-1 Mode 1

Value	Description
1	Fix not available
2	2D
3	3D

Table 4-2 Mode 2

Value	Description
м	Manual-forced to operate in 2D or 3D mode
A	Automatic-allowed to automatically switch 2D/3D

3.1.4 GSV-GNSS Satellites in View

Table 5 contains the values of the following example:

\$GPGSV, 2, 1, 07, 07, 79, 048, 42, 02, 51, 062, 43, 26, 36, 256, 42, 27, 27, 138, 42*71

\$GPGSV, 2, 2, 07, 09, 23, 313, 42, 04, 19, 159, 41, 15, 12, 041, 42*41

Name	Example	Units	Description	
Message ID	\$GPGSV		GSV protocol header	
Number of	2		Range 1 to 3	
Messages ¹				
Messages Number ¹	1	Range 1 to 3		
Satellites in View	07			
Satellite ID	07		Channel 1(Range 1 to 32)	
Elevation	79	degrees	Channel 1(Maximum 90)	
Azimuth	048	degrees	Channel 1(True, Range 0 to 359)	
SNR (C/No)	42	dBHz	Range 0 to 99, null when not	
			tracking	
Satellite ID	27		Channel 4(Range 1 to 32)	
Elevation	27	degrees	Channel 4(Maximum 90)	
Azimuth	138	degrees	Channel 4(True, Range 0 to 359)	
SNR (C/No)	42	dBHz	Range 0 to 99, null when not	
			tracking	
Checksum	*71			
<cr><lf></lf></cr>			End of message termination	

Table 5 GSV Data Format

¹Depending on the number of satellites tracked multiple messages of GSV data may be required.

3.1.5 **RMC**-Recommended Minimum Specific GNSS Data

Table 6 contains the values of the following example:

\$GPRMC, 161229.487, A, 3723.2475, N, 12158.3416, W, 0.13, 309.62, 120598, *10

Name	Example	Units	Description
Message ID	\$GPRMC		RMC protocol header
UTC Position	161229.487		hhmmss.sss
Status	А		A=data valid or V=data not valid
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.3416		dddmm.mmmm
E/W Indicator	w		E=east or W=west
Speed Over Ground	0.13	knots	
Course Over	309.62	degrees	True
Ground			
Date	120598		ddmmyy
Magnetic Variation		degrees	E=east or W=west
Checksum	*10		
<cr><lf></lf></cr>			End of message termination

Table 6 RMC Data Format

3.1.6 **VTG**-Course Over Ground and Ground Speed

Table 7 contains the values of the following example:

\$GPVTG, 309.62, T, , M, 0.13, N, 0.2, K*6E

Name	Example	Units	Description
Message ID	\$GPVTG		VTG protocol header
Course	309.62	degrees	Measured heading

Reference	Т		True
Course		degrees	Measured heading
Reference	М		Magnetic
Speed	0.13	knots	Measured horizontal speed
Units	Ν		Knots
Speed	0.2	km/hr	Measured horizontal speed
Units	к		Kilometer per hour
Checksum	*6E		
<cr><lf></lf></cr>			End of message termination

3.2 MStar NMEA Command

<1>Cold Start Command \$PMST02,58*39

<2>Warm Start Command \$PMST02,48*38

<3>Hot Start Command \$PMST02,0*04

4. Hardware interface

4.1 Definition of Pin assignment

Pin	Signal Name	I/O	Description Characteristics	
1	TX0 I2C_SDA	0	Serial port 0 I2C serial data	V _{OH} ≥VDD-0.1 V _{OL} ≤0.1V
2	RX0 I2C_SCL	I	Serial port 0 /I2C serial clock	V _{IH} ≥2.5V V _{IL} ≤0.8V
3	TX1	0	Serial port 1	<i>V_{OH}</i> ≥VDD-0.1 <i>V_{OL}</i> ≤0.1V
4	RX1	-	Serial port 1	<i>V_{IH}</i> ≥2.5V <i>V_{IL}</i> ≤0.8V
5	NC			
6	VCC	Ι	DC Supply Voltage Input	+3.3V~+5.0V
7	GND	G	Ground	
8	VCCOUT	0	DC output	
9	NC			
10	RESET	Ι		This input is low active.
11	V_BAT	I	RTC Power	+2.5V~+5.0V
12	PEN	I	Standby Pin	Active low
13	GND	G	Ground	
14	GND	G	Ground	
15	GND	G	Ground	
16	RF_IN	I	GPS Signal Input	50 Ω

17	GND	G	Ground	
18	VCC_RF	0	Supply Antenna Bias Voltage	$V_o = VCC \pm 0.2$
19	V_ANT_IN	I	Active Antenna Bias Voltage	Receive DC power supply for active antenna bias
20	GPIO	I/O		Reserved
21	NC			
22	WAKE UP			
23	TIMESYNC	I		TIMESYNC
24	NC			
25	USB_DM			
26	USB_DP			
27	NC			
28	1PPS	0	1 Pulse Per Second	1PPS

RX0

This is the auxiliary receiving channel and is used to input differential corrections to the board to enable DGPS navigation.

TX0

For user's application (not currently used).

RX1

This is the main receiver channel and is used to receive software commands to the board from debug software or from user written software.

TX1

This is the main transmitting channel and is used to output navigation and measurement data to debug software or user written software.

VCC

 $3.3V \sim 5V$ is acceptable operation range of main power supply. The DC power

ripple is required for less than 50mVpp.

GND

GND provides the ground.

VCCOUT

This pin provides DC voltage output.

RESET

On module power up, this signal should remain low until power stable.

This input is low active.

V_BAT

This is the battery backup input that powers the SRAM and RTC when main power is removed. Without an external backup battery, the TMP will execute a cold start after every power on. To achieve the faster start-up offered by a hot or warm start, either a battery backup must be connected or a super cap installed.

 $2.5V \sim 5.0V$ is acceptable operation range of main power supply. The DC power ripple is required for less than 50mVpp.

PEN

Pull low into standby mode.

RF_IN

The GPS module input is optimized to connect to a 50 ohm antenna. The minimized noise figure is achieved by -10dB input return loss. Well controlled antenna impedance (as close to 50ohm as possible) remains the stable system sensitivity. Do not try to match the GPS module to 50ohm for lower return loss which might induce the noise figure increased.

The impedance of RF traces between GPS module, π matching network, and antenna has to be controlled in 50ohm +/-10%. More and tight ground vias surround the RF traces is benefit to isolate interference out.

VCC_RF

This pin provides DC voltage for active antenna.

V_ANT_IN

This pin is reserved an external DC power supply for active antenna.

GPIO

Reserved.

TIMESYNC

In case of Conventional Autonomous Mode, This pin should be pull down $(4.7K\sim10.0K\Omega)$

1PPS

GPS Additional Function (1 Pulse Per Second)

4.2 Electrical specification

Absolute Maximum ratings

Parameter	Symbol	Condition	Min	Max	Units
Power supply voltage	VCC		-0.5	5.5	V
Backup battery Voltage	V_BAT		-0.5	5.5	V
Human Body Model ESD capability	Vesd_hbm			2000	V
Machine Model ESD capability	Vesd_mm			75	V
Storage temerature	Tstg		-40	150	°C

4.3 Operating Conditions

All specifications are at an ambient temperature of 25° C

Parameter	Symbol	conditions	Min	Тур	Max	Units
Power supply voltage	VCC		3.3		5.0	V
VCC Supply current		VCC=3.3V		55		mA
	Acquisition	VCC=5.0V		47		
		VCC=3.3V		45		mA
	Tracking	VCC=5.0V		41		
	lcc	VCC=3.3V		35		uA
	Standby	Vpen=0V				
Backup battery Voltage	V_BAT		2.5		5.0	V
Backup battery current	Ibat	V_BAT=3.3V VCC=0V		16.5		uA
Input return loss	<i>RL</i> in	RF_IN		10		dB
Power Gain	S21			12		dB
Operating temperature	Topt		-40		85	°C

5. Product handling

5.1 Packaging

Modules are delivered as hermetically, tape reel in order to enable efficient production.

5.2 Reels

Modules are deliverable in quantities of 500 pcs on a reel. The dimensions of the reel are shown as below.

5.3 Tapes

The dimensions and orientations of the tapes for MG2217S modules are specified below picture.

5.4 Moisture Sensitivity Levels

The Moisture Sensitivity Level (MSL) relates to the packaging and handling precautions required. Modules are rated at MSL level 4

5.5 Shipment

MG2217S modules are delivered on Tape-and-Reels in a hermetically sealed package to prevent moisture intake and protect against electrostatic discharge. For protection from physical damage.

5.6 Reflow soldering

Recommand the reflow profile show as below.

5.7 ESD handling

The modules are Electrostatic Sensitive Devices (ESD) and require special precautions when handling. Care must be exercised when handling path antennas, due to the risk of electrostatic charges. For ESD safety, the following measures should be taken into account Whenever handling the modules:

- \odot Connect ground of the device before solder an antenna patch.
- To prevent electrostatic discharge through the RF_IN do not Touch the mounted patch antenna.
- When solder RF connectors and patch antennas to the Module's RF IN pin, make sure to use an ESD safe soldering iron.

*	General tolerances = ± 0.2
	Unit : mm

Appendix B. Marking Information

